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SUDDEN BLOCKING OF A SUBCRITICAL OPEN-CHANNEL FLOW

UDC 532.59V. I. Bukreev and V. A. Kostomakha

This paper reports results of experiments in which a steady nonuniform flow in a rectangular
channel with an even horizontal bottom was blocked by a rapidly falling shield. Data on the
height of the splash-up of water on the shield and the shape, propagation speed, height, and
internal structure of the upstream propagating wave of the bore type are obtained for various
liquid flow rates at the channel entrance. It is established that the bore produces a strong strati-
fication in the liquid particle velocity, and under particular conditions, the speed of propagation
and height of the bore, and the height of the water splash-up on the wall are constant and are
determined only by the critical depth for unperturbed flow, i.e., by the specified flow rate.

Entering a river, a tidal wave or a tsunami wave can be transformed into a moving hydraulic jump,
which is termed a “bore” [1]. Only descriptive information on this complex process has been obtained
previously [2]. Much more attention has been given to waves of the bore type in the dam-break problem [1].
A characteristic feature of the transformation of a tidal wave is that this wave propagates over a counterflow.
Because of nonlinearity, nonstationarity, and possibility of breaking, a theoretical analysis of waves of the
bore type involves great difficulties. Therefore, information on these waves can be obtained mainly in physical
and numerical experiments.

The present paper reports results of laboratory studies of the formation and propagation of a bore
over a counterflow in a simple formulation of the problem. The experimental setup is shown schematically
in Fig. 1. A steady flow of an incompressible liquid (water) with volume flow rate Q was produced in a
rectangular channel of width B with an even horizontal bottom. At the time t = 0, the channel flow was
completely blocked by a rapidly falling shield with cross section x = 0. The fixed rectangular coordinate
system used is shown in Fig. 1.

In hydraulics, important characteristics of the unperturbed flow considered are the critical depth h∗
and the corresponding critical speed V∗, which are given by the formulas [3, 4]

h∗ = 3
√
q2/g, V∗ =

√
gh∗, q = Q/B,

where q is the specific flow rate and g is the acceleration of gravity. A flow is called subcritical if its local
depth h(x) exceeds h∗. In the present paper, we consider the case where the shield blocks a subcritical flow.
The unperturbed free surface was a decrement curve, the local depth h(x) decreased monotonically, and the
local velocity V = Q/(Bh) increased monotonically downstream.

When the shield fell, a bore type wave propagated upstream. An important difference between a bore
and a classical hydraulic jump is that the former is substantially unstationary. In the present experiments,
the bore propagated over a shear counterflow with increasing depth. There are five main forms of a classical
hydraulic jump produced by flow from under a shield [4]. All these forms were observed in the present
experiments. Three of them are characterized by the presence of undulations — gradually damped oscillations
of the free surface. The undular bore was smooth or had a breaking first crest or several breaking crests.
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Fig. 1. Experimental setup: 1) damping reservoir; 2) honeycomb; 3) perforated plate;
4) working section of the channel; 5) wavemeters; 6) shield; 7) pump; 8) water pressure
gauge; 9) Venturi meter; a is a decrement curve.

Generally, besides B, Q and g, among the parameters of the problem considered are the density ρ

and kinematic viscosity ν of the liquid, surface tension, and the density, viscosity, and compressibility of air.
Below, we consider only flow kinematic characteristics on which densities of water and air have only indirect
influence via the mechanism of energy dissipation and only in the case where waves break and air is entrained
in the water. Surface tension and the viscosity and compressibility of air were of secondary significance
in the experiments. The main parameters were B, Q, g, and ν. They can be united in two independent
dimensionless complexes, for example,

Π1 =
Q

B2
√
gB

, Π2 = Q 3

√
g

ν5
.

In the present experiments, Π1 and Π2 were related to one another because B = 6 cm and ν = 0.0115 cm2/sec
did not change. Therefore, below we give only values of Π1. If necessary, from the values of Π1 and B, one
can calculate the flow rate and then Π2. The effects of surface tension and air can be taken into account
by using reference data for them at a temperature of 15◦C. In the formulation of the problem, an important
point is the choice of the cross section of the channel in which the shield falls. In the experiments described
here, the shield was at a distance of 11 cm from the channel outlet section, where the water was freely issuing
into the atmosphere.

The channel with a working section 4.8 m long had transparent Plexiglas walls. Unperturbed flow was
produced by a bladed pump with a direct current electric motor. This made it possible to vary the flow rate
over a wide range by changing the speed of the electric motor without using a value. The system incorporated
a Venturi meter with a water pressure gauge. To flatten the flow at the entrance to the working section of
the channel, we used a damping reservoir, a honeycomb, and a perforated plate. The shield was dropped
manually for a typical time of about 0.1 sec. After the shield fell, the pump continued to work. Measurements
were terminated when the reflected wave reached the shield.

In the experiments, we measured decrement curves h(x,Π1,Π2), the height of the water splash-up on
the fallen shield H(y,Π1,Π2), and the wave profile η(x, t,Π1,Π2) = z∗−h, where z∗ is the vertical coordinate
of the perturbed free surface in the longitudinal plane of symmetry of the channel. The internal structure of
the flow was also studied. The term “internal structure” is used here for an ensemble of trajectories of fine
suspended particles (aluminum powder).

The decrement curves were measured by a measuring needle. The wave profile was determined by
means of motionless wavemeters, which recorded the dependence of η(t) for fixed values of other arguments,
in particular, x. Two wavemeters spaced ∆x = 30 cm apart measured the times ∆ti and rates of longitudinal
displacements ci = ∆x/∆ti for a number of points chosen on the wave profile. Since the waves were non-
stationary, different points of their profiles moved with different speeds. Under the conditions of the present
experiments, the rates of displacement of points of the leading front differed by not more than 2%.

For measurements of H, a tooth-powder was applied on the shield surface by means of a porolon
sponge. Upon reflection of the flow, the powder was flushed away, and a distinct boundary of the maximum
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Fig. 2. Development of a bore for Π1 = 0.235: curves 1–4 refer to x/l = 0.55 · 104, 1.17 · 104, 1.80 · 104,
and 2.42 · 104, respectively.

water splash-up remained on the shield surface. The trajectories of the aluminum powder particles were
recorded by photography in a dark room. Only the chosen part of the flow in the neighborhood of the
longitudinal symmetry plane of the channel was illuminated by a light “knife” about 1 cm thick. The
exposure in photography was large (up to 1 sec).

Below, a denotes the height of the wave and c denotes the speed of wave propagation. In the presence
of undulations, a was taken to be the height of the first wave crest, and in the absence of undulations, it
was the difference of levels behind and ahead of the leading wave front. The speed of propagation means the
value of ci that corresponds to the point at the middle height of the leading wave front.

An analysis of several possible versions of conversion to dimensionless quantities shows that for the
goals of the present work, various characteristic length scales are optimal: the critical depth h∗ for h, η,
H, and a, the channel width B for the transverse coordinate y, and the complex l = C1/3ν2/3g−1/2 for
the longitudinal coordinate x (C [m1/2/sec] is the Chezi empirical coefficient, which takes into account the
roughness of the channel walls [3, 4]). In a channel with zero slope of the bottom in experiments, the value
of C is determined with a large error. Since the coefficient C is used below only for normalization, its value
is calculated from the Manning formula [3, 4]. The coefficient C depends on Q and x. This dependence is
weak, however. In the present experiments, the scale l was varied in the range 0.0126–0.0131 cm. Therefore
in the normalization of x, we used the constant mean value of l = 0.0128 cm. The time was normalized by√
h∗/g, and the speeds were normalized by V∗ =

√
gh∗ and

√
gh.

Figure 2 shows typical wave profiles as functions of time recorded by the wavemeters in the same
experiment at different distances from the shield. The quantity τ = (t − t0j)/

√
h∗/g is plotted on the

abscissa (t0j is the moment when the middle point of the leading front passes through the wavemeter).
Upon reflection from the shield, a turbulent bore with a breaking leading front and a roller in the

head formed. Then undulations occurred, but the roller was maintained. With distance from the shield, the
undulations strengthened and the breaking of the leading front became less intense. At large distances, the
breaking ceased and a smooth undular bore formed. As in the cases of a classical wavy hydraulic jump [4]
and a solitary wave [5], on the smooth, generally flat bore there were oblique waves, whose amplitudes was
limited by surface tension. In the example considered, the leading front of the bore broke on the interval
0 < x/l < 1.8 · 104. On the interval 1.8 · 104 < x/l < 2.4 · 104, the bore was smooth. Then, its leading front
began to break again.

At the scale of Fig. 2, the difference between smooth and breaking waves is insignificant. Visually, the
transition from smooth waves to breaking waves and the reverse transition was traced more precisely. Visual
observations showed that in the initial stage of the direct transition and at the closing stage of the reverse
transition, a typical bend — an angular point with the apex directed to the inside of the wave — appeared
on the profile of the leading front of the undular bore (and not on the crest but closer to its trough). It is
interesting to compare this result with the well-known data for solitary and undular waves on an initially
quiescent liquid of constant depth.
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Fig. 3. Dependence of the characteristics of the main flow and the bore on x/l for U = (c + V )/
√
gh,

W = c/V∗, Z = h/h∗, and A = a/h∗.

Theoretical calculations of a solitary wave of limiting amplitude have been performed in many papers
(see, for example [6, 7]). In theory, the limiting state means a state in which the local velocity of the liquid
particles coincides with the speed of wave propagation even at one point of the flow field. In the model of an
ideal liquid, these speeds coincide at the crest, and it is precisely in this place that an angular point appears
as an indication of the instability of the theoretical wave. In real waves, the picture is complicated by the
influence of viscosity, surface tension, and the fact that on a plane solitary wave there are always oblique
waves. Nevertheless, breaking of a real solitary wave begins from the crest. The experiments of [8] showed
that this is also true for undular waves on a quiescent liquid. Therefore, the displacement of the angular
point to the trough of the leading front observed in the present experiments is due to the influence of the
counterflow.

The experiments performed provided some information on the conditions under which transition from
smooth to breaking waves begins and the reverse transition ends in the presence of a counterflow. Investigation
of this problem for waves propagating over a quiescent liquid with constant final depth h0 showed (see [8]) that
in this case, along with the well-known characteristic speed c1 =

√
gh0, there is the higher characteristic speed

c2 = 1.294c1, in whose neighborhood direct and reverse transitions from breaking to smooth waves on shallow
water occur in practice. For speeds close to c1, the waves retain smoothness. In the range c1 < c < c2, on a
smooth main wave there are oblique waves. The value of the coefficient of 1.294 was obtained by theoretical
calculations for solitary waves [6], and its validity for waves of the type of a smooth undular bore was justified
only by experiments.

One should expect that local (dependent on x) critical speeds with a similar physical meaning also exist
for the problem considered, along with the critical speed V∗ calculated from the specified flow rate. In deter-
mining these speeds, one should take into account the unperturbed flow velocity. As a first approximation, for
waves on counterflow, the local critical speeds can be c∗(x,Π1,Π2) =

√
gh−V and c∗∗(x,Π1,Π2) = 1.3

√
gh−V ,

and, in this case, both h, and V depend on x. To obtain more precise values for them, it is necessary to
take into account the nonstationarity of the wave and the inhomogeneity of the counterflow along the three
spatial coordinates.

Figure 3 gives experimental values of c as functions of U(x/l) and W (x/l). The first function is
obtained with normalization of c by

√
gh, and the second is obtained with normalization by V∗. The second

critical speed has a value of U = 1.294 (dashed curve), and the first critical speed has a value of U = 1.
Visual observations showed that the experimental points U located above the dashed curve correspond to
breaking waves, and the experimental points located below it correspond to smooth waves. Thus, within
a root-mean-square measurement error of 2%, the experiments confirmed the assumption that for waves on
counterflow, direct transition from smooth to breaking waves occurs in the neighborhood of the second local
critical speed c = c∗∗. As in the case of propagation of undular waves on a quiescent liquid, the reverse
transition ended at a value of c somewhat smaller than c∗∗ but much larger than c∗.
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Fig. 4 Fig. 5

Fig. 4. Typical profiles of the splash-up height for Π1 = 0.174 (1), 0.665 (2), and 1.31 (3).

Fig. 5. Dependence of the mean height of splash-up on Π1 (the chosen point numbers correspond to the
profile numbers in Fig. 4).

Normalization by V∗ yields the following important result: there is a range of Π1 and x in which
c/V∗ = const, and, more interestingly, the value of the constant is close to unity. This implies that to determine
the speed of propagation of the bore, it suffices to know only the flow rate. In theoretical calculations, this
result can be used for testing models or as a postulate for closure of a system of equations. A more complete
determination of the range of applicability of this postulate requires further examination. The experimental
data given in Fig. 3a show that for small and large x there are some deviations from the regularity discussed
here. For small x, the deviation is caused by the splash-up of water on the wall, and for large x, they are
caused by the influence of undulations. One might expect that in the presence of strong undulations, the
ratio c/V∗ does not exceed 1.3.

The functions Z(x/l) in Fig. 3b correspond to the decrement curves for the unperturbed flow. It
should be noted that with the chosen direction of the x axis opposite to the main flow (see Fig. 1), these
functions are a mirror reflection of the real decrement curves. It is obvious that normalization of h by h∗ and
normalization of x by l does not lead to the universality of the functions discussed. Determination of optimal
normalization requires additional experimental information.

The indicated normalization is close to the optimum for the bore height, as follows from the dependence
represented by the points A in Fig. 3b. As the propagation speed, the nondimensional height of the bore is
constant in a certain range of Π1 and x, and the value of the constant is close to unity. For the bore height,
the spread of experimental points is somewhat larger than that for the propagation speed. For small x, there
are deviations from the observed regularity due to the splash-up of water on the wall.

Figure 4 shows the dependence of the splash-up height on the longitudinal coordinate y for various
values of the parameter Π1. It is expedient to consider these data together with the dependence of the mean
height of splash-up 〈H〉 on Π1 given in Fig. 5. The experimental points 1–3 in Fig. 5 correspond to the curves
with the same numbers in Fig. 4. The values of 〈H〉 are obtained by averaging H over y. The experimental
data in Figs. 4 and 5 show that there is a range of values of the parameter Π1 in which H is uniformly
distributed along y, and 〈H〉/h∗ = const = 3. For small and large values of Π1, there were deviations from
this dependence. For small Π1, the influence of the lateral walls of the channel was manifested. For large Π1,
the continuity of the liquid jet rising on the wall was violated.

For adequate mathematical modeling of the problem considered, information on the internal structure
of the flow is of great significance. Experimental data are partly given in [9]. These data demonstrate that a
bore propagating over a counterflow generates a strong stratification in the liquid particle velocity. A thick
boundary layer of the stagnated liquid is formed at the bottom, and large vortices are formed at the free
surface. A wavy jet propagates in the flow region at the middle height. When the bore propagates over a
quiescent liquid, the flow structure is simpler than that [9].
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Fig. 6. Flow structure at a large distance from the bore front (Π1 = 0.235).

The photographs given in [9] show only the head of a bore. In the problem considered, after blockade
of the flow, the liquid continued to pass into the channel with flow rate Q, the free surface level behind the
leading front of the bore increased continuously, and a decrement curve formed in the direction opposite to
that in the unperturbed state. As a result, the internal structure of the flow remained complex at large
distances from the leading front as well (Fig. 6). The vertical white lines on the photograph represent the
scale grid on the internal surface of the lateral wall of the channel. The left line corresponds to a distance
from the shield x = 70 cm. Here the depth of the unperturbed flow was 3.4 cm. The scale lines are spaced
10 cm apart. The exposure was 1 sec. At the beginning of filming, the leading front of the wave was at about
x = 160 cm, and at the end, it was at about x = 200 cm. On this segment, the breaking of the leading front
ceased. The free surface profile behind the bore was close to the that presented in Fig. 2 (curve 3).

From Fig. 6 one can see that ordered vortex structures are formed at large distances behind the leading
front of the bore. Here, in contrast to the bore head, vortices are located at the middle height the flow region.
This is due to the global circulation of the liquid between the bore head and the shield because the liquid
passed continuously with constant flow rate Q through the leading front of the bore, and the rate of flow
through the shield was equal to zero. The reverse flow from the shield to the front of the bore is concentrated
in a thin layer at the free surface. The boundary layer at the bottom is thinner than that at the bore head.

In conclusion, it should be noted that the problem considered can be used to test and develop mathe-
matical models capable of describing processes with distinct deterministic and random properties. In turbu-
lence theory, much attention has been given to coherent (deterministic) structures, similar to those given in
Fig. 6 (see, e.g., [10]). Recently, a number of mathematical models for describing the processes considered
have also been proposed in wave theory. Such models must take into account the liquid particle velocities
stratification. When shallow water theory is used in the standard Lagrangian approximations [11], the verti-
cal velocity profile is approximated by polynomials, and, therefore, many terms of the series are required to
describe vortex and jet flows. Calculations using the Euler or Navier–Stokes equations are simpler; the more
so since there are appropriate algorithms (see, e.g, [12]). However, analytical studies of the general prop-
erties of flows using such numerical experiments are difficult. They provide less information than physical
experiments because they can be used in a limited range of problem parameters.

New trends in shallow water wave theory (see, e.g., [13–15]) make analytical studies possible. This
is achieved by using nonstandard methods of taking into account the nonhydrostatic pressure distribution
along the vertical [13] or the vorticity [14, 15]. The experimental data presented here allow one to test these
models not only for the shape, propagation speed, and height of bores but also for the internal structure of
flows.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98-01-
00750) and the Program of Integration Fundamental Research of the Siberian Division of the Russian Academy
of Sciences (Grant No. 2000-1).
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